3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Project 3: Gitlet, your own
version-control system

Introduction

Welcome to Gitlet, the final project of the semester! The following
spec is incredibly long and detailed; it's easily the most nuanced
project that you'll work on in this class. However, all of the
information in this spec is here for a reason. Though you may not
get through all of this info on the first, second, or even third read-
throughs, please keep revisiting the various tabs on the left as
you progress through the project. You'll often find the answers to
your questions tucked away in some section of this spec, so it
behooves you to refer to this document before relying on a
Piazza, Gitbug, or office hours response (as generations of

students have learned the hard way).

Lastly, while this project may seem quite daunting and intense,
it's one of the most rewarding parts of the CS61B experience!
Students have said as much for years; the lessons and
techniques that you learn from completing this project will help
you immensely in future projects, courses, and even jobs. So,

without further ado, let's get started!

Note: This spec is now paginated, which means that each piece
of the spec has its own dedicated page! We made this change to
make the spec easier to navigate; however, if you prefer the old
version of the spec with everything on one page, you can find

that version here.

Acknowledgements

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 1/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Anarew rudng, rdin 4nao, iviaunew vnow, especidily Aidil 1do,
Daniel Nguyen, and Armani Ferrante for providing feedback on

this project. Thanks to git for being awesome.

This project was largely inspired by this excellent article by Philip

Nilsson.

This project was created by Joseph Moghadam. Modifications for
Fall 2015, Fall 2017, and Fall 2019 by Paul Hilfinger.

Useful Links

Listed below are many high quality resources compiled across
multiple semesters to help you get started/unstuck on Gitlet.
These videos and resources will be linked in the relevant
portions of the spec, but they are here as well for your
convenience. More resources may be created throughout the
duration of the project as needed; if so, they will be linked here

as well.

o Git Intros: These should mostly be review at this point
since you have been using Git throughout the semester,
but it is vital that you have a strong understanding of Git
itself before trying to implement Gitlet. Be sure you
understand the contents of these videos thoroughly before

proceeding.
o Part1
o Part2

¢ Gitlet Intros: The introduction to our mini-version of Git,
Gitlet.

o Part 1

o Part2

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 2/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

o Part4
o Slides

e OH Presentations (from Fall 2021)
o Getting Started: Recording, Slides
o Testing and Debugging: Recording, Slides
o Merge: Recording, Slides

e Understanding Branch

e Understanding Merge

e Testing

o Gitlet FAQ/Help Doc

¢ Gitlet Review Session 1 (4/13) Video

o Gitlet Review Session 1 (4/13) Slides

o Gitlet Presentation 2 (4/20) Video

o Gitlet Presentation 2 (4/20) Slides

¢ Gitlet Presentation 3 (4/27) Video

o Gitlet Presentation 3 (4/27) Slides

o Staff Gitlet Testing Files

Overview of Gitlet

In this project you'll be implementing a version-control system
that mimics some of the basic features of the popular system Git.
Ours is smaller and simpler, however, so we have named it
Gitlet.

A version-control system is essentially a backup system for

related collections of files. The main functionality that Gitlet

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 3/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

1. Saving the contents of entire directories of files. In Gitlet,
this is called committing, and the saved contents

themselves are called commits.

2. Restoring a version of one or more files or entire commits.
In Gitlet, this is called checking out those files or that

commit.

3. Viewing the history of your backups. In Gitlet, you view this

history in something called the /og.

4. Maintaining related sequences of commits, called

branches.
5. Merging changes made in one branch into another.

The point of a version-control system is to help you when
creating complicated (or even not-so-complicated) projects, or
when collaborating with others on a project. You save versions of
the project periodically. If at some later point in time you
accidentally mess up your code, then you can restore your
source to a previously committed version (without losing any of
the changes you made since then). If your collaborators make
changes embodied in a commit, you can incorporate (merge)

these changes into your own version.

In Gitlet, you don't just commit individual files at a time. Instead,
you can commit a coherent set of files at the same time. We like
to think of each commit as a snapshot of your entire project at
one point in time. However, for simplicity, many of the examples
in the remainder of this document involve changes to just one file
at a time. Just keep in mind you could change multiple files in

each commit.

In this project, it will be helpful for us to visualize the commits we
make over time. Suppose we have a project consisting just of the
file wug.txt, we add some text to it, and commit it. Then we

modify the file and commit these changes. Then we modify the

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 4/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

uree wtdl versioris Ol Uis e, edcCr one iater In urmne wudri uie

previous. We can visualize these commits like so:

wug.txt wug.txt wug.txt

A
A

This is a wg This is a wug This is a wug.

Here we've drawn an arrow indicating that each commit contains
some kind of reference to the commit that came before it. We
call the commit that came before it the parent commit—this will
be important later. But for now, does this drawing look familiar?
That's right; it's a linked list!

The big idea behind Gitlet is that we can visualize the history of
the different versions of our files in a list like this. Then it's easy
for us to restore old versions of files. You can imagine making a
command like: "Gitlet, please revert to the state of the files at
commit #2", and it would go to the second node in the linked list
and restore the copies of files found there, while removing any

files that are in the first node, but not the second.

If we tell Gitlet to revert to an old commit, the front of the linked
list will no longer reflect the current state of your files, which
might be a little misleading. In order to fix this problem, we
introduce something called the head pointer. The head pointer
keeps track of where in the linked list we currently are. Normally,
as we make commits, the head pointer will stay at the front of the
linked list, indicating that the latest commit reflects the current

state of the files:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

5/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Commit 1 Commit 2 Commit 3

wug.tet wug. txt wug. et

This is a wug This is a wug.

Thisis awag

However, let's say we revert to the state of the files at commit #2
(technically, this is the reset command, which you'll see later in

the spec). We move the head pointer back to show this:

head
Commit 1 Commit 2 Commit 3
wug.tet wg.bet wig. bt

This is a wug This is a wug.

This is a wg

All right, now, if this were all Gitlet could do, it would be a pretty
simple system. But Gitlet has one more trick up its sleeve: it
doesn't just maintain older and newer versions of files, it can
maintain differing versions. Imagine you're coding a project, and
you have two ideas about how to proceed: let's call one Plan A,
and the other Plan B. Gitlet allows you to save both versions,
and switch between them at will. Here's what this might look like,

in our pictures:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

6/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

This is a wug

This is a wg

It's not really a linked list anymore. It's more like a tree. We'll call
this thing the commit tree. Keeping with this metaphor, each of
the separate versions is called a branch of the tree. You can

develop each version separately:

wug.txt wug.tet A

There are two pointers into the tree, representing the furthest

point of each branch. At any given time, only one of these is the

currently active pointer, and this is what's called the head pointer.

The head pointer is the pointer at the front of the current branch.

That's it for our brief overview of the Gitlet system! Don't worry if
you don't fully understand it yet; the section above was just to
give you a high level picture of what its meant to do. A detailed
spec of what you're supposed to do for this project follows this

section.

But a last word here: commit trees are immutable: once a
commit node has been created, it can never be destroyed (or

changed at all). We can only add new things to the commit tree,

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

7/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

urie Ol uluels godis IS L0 dllow us 0 sdve Uings uidtL we workea
on in the past so we don't delete them accidentally; this
functionality would be jeopardized if we were allowed to edit past

commits.

Internal Structures

Real Git distinguishes several different kinds of objects. For our

purposes, the important ones are
o blobs: Essentially the contents of files.

o trees: Directory structures mapping names to references to

blobs and other trees (subdirectories).

e commits: Combinations of log messages, other metadata
(commit date, author, etc.), a reference to a tree, and
references to parent commits. The repository also
maintains a mapping from branch heads (in this course,
we've used names like master, proj2, etc.) to references to
commits, so that certain important commits have symbolic

names.
We will simplify from Git still further by

¢ Incorporating trees into commits and not dealing with
subdirectories (so there will be one "flat" directory of plain

files for each repository).

e Limiting ourselves to merges that reference two parents (in

real Git, there can be any number of parents.)

» Having our metadata consist only of a timestamp and log
message. A commit, therefore, will consist of a log
message, timestamp, a mapping of file names to blob
references, a parent reference, and (for merges) a second

parent reference.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

8/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

uniqgue integer 1a uidtlL serves ds d reiererice o0 e objecl. Al
interesting feature of Git is that these ids are universal: unlike a
typical Java implementation, two objects with exactly the same
content will have the same id on all systems (i.e. my computer,
your computer, and anyone else's computer will compute this
same exact id). In the case of blobs, "same content" means the
same file contents. In the case of commits, it means the same
metadata, the same mapping of names to references, and the
same parent reference. The objects in a repository are thus said

to be content addressable.

Both Git and Gitlet accomplish this the same way: by using a
cryptographic hash function called SHA-1 (Secure Hash 1),
which produces a 160-bit integer hash from any sequence of
bytes. Cryptographic hash functions have the property that it is
extremely difficult to find two different byte streams with the
same hash value (or indeed to find any byte stream given just its
hash value), so that essentially, we may assume that the
probability that any two objects with different contents have the

2-160

same SHA-1 hash value is or about 10™*8. Basically, we

simply ignore the possibility of a hashing collision, so that the

system has, in principle, a fundamental bug that in practice never

occurs!

Fortunately, there are library classes for computing SHA-1
values, so you won't have to deal with the actual algorithm. All
you have to do is to make sure that you correctly label all your

objects. In particular, this involves

¢ Including all metadata and references when hashing a

commit.

 Distinguishing somehow between hashes for commits and
hashes for blobs. A good way of doing this involves a well-
thought out directory structure within the .gitlet directory.

Another way to do so is to hash in an extra word for each

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

9/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

COITHTILS.

By the way, the SHA-1 hash value, rendered as a 40-character
hexadecimal string, makes a convenient file name for storing
your data in your .gitlet directory (more on that below). It also
gives you a convenient way to compare two files (blobs) to see if
they have the same contents: if their SHA-1s are the same, we

simply assume the files are the same.

For remotes (like origin and shared, which we've been using all
semester), we'll simply use other Gitlet repositories. Pushing
simply means copying all commits and blobs that the remote
repository does not yet have to the remote repository, and
resetting a branch reference. Pulling is the same, but in the other
direction. Remotes are extra credit in this project and not

required for full credit.

Reading and writing your internal objects from and to files is
actually pretty easy, thanks to Java's serialization facilities. The
interface java.io.Serializable has no methods, but if a class
implements it, then the Java runtime will automatically provide a
way to convert to and from a stream of bytes, which you can
then write to a file using the 1/O class
java.io.ObjectOutputStream and read back (and deserialize)
with java.io.ObjectInputStream. The term "serialization" refers
to the conversion from some arbitrary structure (array, tree,
graph, etc.) to a serial sequence of bytes. You should have seen
and gotten practice with serialization in lab 11. You'll be using a
very similar approach here, so do use your lab11 as a resource

when it comes to persistence and serialization.

Here is a summary example of the structures discussed in this
section. As you can see, each commit (rectangle) points to some
blobs (circles), which contain file contents. The commits contain
the file names and references to these blobs, as well as a parent

link. These references, depicted as arrows, are represented in

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 10/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

nexdaaeclmdi nuirtierdis dbove uie COITITIILS dlna peliow Ue DIops).
The newer commit contains an updated version of wugl.txt, but
shares the same version of wug2.txt as the older commit. Your
commit class will somehow store all of the information that this
diagram shows: a careful selection of internal data structures will
make the implementation easier or harder, so it behooves you to
spend time planning and thinking about the best way to store

everything.

52cc235... bbtlaba...

12/01/2015: 1200 11/20/1015:1930

Commits: | versien 1 log version 2 log

wugl. txt wugZ.txt wugl. txt wug2 . txt

2 2

Blobs: wug 1 wug 2 oo L
veraion 1 version 1 version 2

2bZeced... 9480ea... 260151...

Detailed Spec of Behavior

The only structure requirement we're giving you is that you have
a class named gitlet.Main and that it has a main method.

Here's your skeleton code for this project (in package Gitlet):

public class Main {
public static void main(String[] args) {
// FILL IN

}

We are also giving you some utility methods for performing a
number of mostly file-system-related tasks, so that you can
concentrate on the logic of the project rather than the

peculiarities of dealing with the OS.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

11/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

projeci—in 1acL, piedse Q0. bul aorl L uUse dily exierndil coue
(aside from JUnit), and don't use any programming language
other than Java. You can use all of the Java Standard Library

that you wish, plus utilities we provide.

The majority of this spec will describe how Main. java's main

method must react when it receives various Gitlet commands as
command-line arguments. But before we break down command-
by-command, here are some overall guidelines the whole project

should satisfy:

 |In order for Gitlet to work, it will need a place to store old
copies of files and other metadata. All of this stuff must be
stored in a directory called .gitlet, just as this information
is stored in directory .git for the real git system (files with
a . in front are hidden files. You will not be able to see
them by default on most operating systems. On Unix, the
command 1s -a will show them.) A Gitlet system is
considered "initialized" in a particular location if it has a
.gitlet directory there. Most Gitlet commands (except for
the init command) only need to work when used from a
directory where a Gitlet system has been initialized—i.e. a
directory that has a .gitlet directory. The files that aren't
in your .gitlet directory (which are copies of files from the
repository that you are using and editing, as well as files
you plan to add to the repository) are referred to as the files

in your working directory.

¢ Most commands have runtime or memory usage
requirements. You must follow these. Some of the runtimes
are described as constant "relative to any significant
measure". The significant measures are: any measure of
number or size of files, any measure of number of commits.
You can ignore time required to serialize or deserialize,

with the one caveat that your serialization time cannot

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 12/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

daaea, cornrriieda, ewc (wndt Is seridiiZduor ¢ you i see
later in the spec). You can also assume that getting from a

hash table is constant time.

Some commands have failure cases with a specified error
message. The exact formats of these are specified later in
the spec. All error message end with a period; since our
autograding is literal, be sure to include it. If your program
ever encounters one of these failure cases, it must print the
error message and not change anything else. You don't
need to handle any other error cases except the ones listed

as failure cases.

There are some failure cases you need to handle that don't

apply to a particular command. Here they are:

o If a user doesn't input any arguments, print the

message Please enter a command. and exit.

o If a user inputs a command that doesn't exist, print
the message No command with that name exists.

and exit.

o If a user inputs a command with the wrong number or
format of operands, print the message Incorrect

operands. and exit.

o If a user inputs a command that requires being in an
initialized Gitlet working directory (i.e., one containing
a .gitlet subdirectory), but is not in such a directory,
print the message Not in an initialized Gitlet

directory.

Some of the commands have their differences from real Git
listed. The spec is not exhaustive in listing all differences
from git, but it does list some of the bigger or potentially

confusing and misleading ones.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

13/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

O0ITIEe OI OUr dulograaer Lests will predk 11 you print

anything more than necessary.

» Always exit with exit code 0, even in the presence of errors.

This allows us to use other exit codes as an indication that

something blew up.

e The spec classifies some commands as "dangerous".
Dangerous commands are ones that potentially overwrite
files (that aren't just metadata)—for example, if a user tells
Gitlet to restore files to older versions, Gitlet may overwrite

the current versions of the files. Just FYI.

The Commands

We now go through each command you must support in detail.
Remember that good programmers always care about their data
structures: as you read these commands, you should think first
about how you should store your data to easily support these
commands and second about if there is any opportunity to reuse
commands that you've already implemented (hint: there is ample

opportunity in this project to reuse code you've already written).

init
o Usage: java gitlet.Main init

o Description: Creates a new Gitlet version-control system
in the current directory. This system will automatically start
with one commit: a commit that contains no files and has
the commit message initial commit (just like that, with
no punctuation). It will have a single branch: master, which
initially points to this initial commit, and master will be the
current branch. The timestamp for this initial commit will be
00:00:00 UTC, Thursday, 1 January 1970 in whatever

format you choose for dates (this is called "The (Unix)

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

14/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

iniudl COITITIL N dll reposiories crediled py wiuetl wii ndve
exactly the same content, it follows that all repositories will
automatically share this commit (they will all have the same

UID) and all commits in all repositories will trace back to it.

Runtime: Should be constant relative to any significant

measure.

Failure cases: If there is already a Gitlet version-control
system in the current directory, it should abort. It should
NOT overwrite the existing system with a new one. Should
print the error message A Gitlet version-control

system already exists in the current directory.
Dangerous?: No

Our line count: ~25

Usage: java gitlet.Main add [file name]

Description: Adds a copy of the file as it currently exists to
the staging area (see the description of the commit
command). For this reason, adding a file is also called
staging the file for addition. Staging an already-staged file
overwrites the previous entry in the staging area with the
new contents. The staging area should be somewhere in
.gitlet. If the current working version of the file is identical
to the version in the current commit, do not stage it to be
added, and remove it from the staging area if it is already
there (as can happen when a file is changed, added, and
then changed back). The file will no longer be staged for
removal (see gitlet rm), if it was at the time of the

command.

Runtime: In the worst case, should run in linear time

relative to the size of the file being added and Ig IV, for N

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 15/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Failure cases: If the file does not exist, print the error
message File does not exist. and exit without changing

anything.
Dangerous?: No

Our line count: ~20

commit

e Usage: java gitlet.Main commit [message]

o Description: Saves a snapshot of tracked files in the

current commit and staging area so they can be restored at
a later time, creating a new commit. The commit is said to
be tracking the saved files. By default, each commit's
snapshot of files will be exactly the same as its parent
commit's snapshot of files; it will keep versions of files
exactly as they are, and not update them. A commit will
only update the contents of files it is tracking that have
been staged for addition at the time of commit, in which
case the commit will now include the version of the file that
was staged instead of the version it got from its parent. A
commit will save and start tracking any files that were
staged for addition but weren't tracked by its parent. Finally,
files tracked in the current commit may be untracked in the
new commit as a result being staged for removal by the rm

command (below).

The bottom line: By default a commit is the same as its
parent. Files staged for addition and removal are the
updates to the commit. Of course, the date (and likely the

message) will also be different from the parent.

+ Some additional points about commit:

o The staging area is cleared after a commit.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

16/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Project 3 | CS 61B Spring 2022

rermoves nlies In e working aireclory (ouer wudri
those in the .gitlet directory). The rm command will

remove such files, as well as staging them for

removal, so that they will be untracked after a commit.

Any changes made to files after staging for addition
or removal are ignored by the commit command,
which only modifies the contents of the .gitlet
directory. For example, if you remove a tracked file
using the Unix rm command (rather than Gitlet's
command of the same name), it has no effect on the
next commit, which will still contain the deleted

version of the file.

After the commit command, the new commit is added

as a new node in the commit tree.

The commit just made becomes the "current commit”,
and the head pointer now points to it. The previous

head commit is this commit's parent commit.

Each commit should contain the date and time it was

made.

Each commit has a log message associated with it
that describes the changes to the files in the commit.
This is specified by the user. The entire message
should take up only one entry in the array args that is
passed to main. To include multiword messages,

you'll have to surround them in quotes.

Each commit is identified by its SHA-1 id, which must
include the file (blob) references of its files, parent

reference, log message, and commit time.

Diff Utility « Runtime: Runtime should be constant with respect to any
measure of number of commits. Runtime must be no worse

than linear with respect to the total size of files the commit

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 17/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

requirertient COImmiwng must imncredse uie size ol ue
.gitlet directory by no more than the total size of the files
staged for addition at the time of commit, not including
additional metadata. This means don't store redundant
copies of versions of files that a commit receives from its
parent. You are allowed to save whole additional copies of
files; don't worry about only saving diffs, or anything like
that.

Failure cases: If no files have been staged, abort. Print the
message No changes added to the commit. Every
commit must have a non-blank message. If it doesn't, print
the error message Please enter a commit message. ltis
not a failure for tracked files to be missing from the working
directory or changed in the working directory. Just ignore

everything outside the .gitlet directory entirely.
Dangerous?: No

Differences from real git: In real git, commits may have
multiple parents (due to merging) and also have

considerably more metadata.

e Our line count: ~35

Here's a picture of before-and-after commit:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

18/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

wug.txt wug.tat

Thisis awg

Thisis awug

head
After commit! mL
wug.tet wig. bt wig. bt

This is awg

rm

log

This is a wug This is a wug.

Usage: java gitlet.Main rm [file name]

Description: Unstage the file if it is currently staged for
addition. If the file is tracked in the current commit, stage it
for removal and remove the file from the working directory
if the user has not already done so (do not remove it unless

it is tracked in the current commit).

Runtime: Should run in constant time relative to any

significant measure.

Failure cases: If the file is neither staged nor tracked by
the head commit, print the error message No reason to

remove the file.

Dangerous?: Yes (although if you use our utility methods,
you will only hurt your repository files, and not all the other

files in your directory.)

Our line count: ~20

o Usage: java gitlet.Main log

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

19/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Immormauon apout edci COIMmITIL DACKwdIads diorng uie
commit tree until the initial commit, following the first parent
commit links, ignoring any second parents found in merge
commits. (In regular Git, this is what you get with git log
--first-parent). This set of commit nodes is called the
commit's history. For every node in this history, the
information it should display is the commit id, the time the
commit was made, and the commit message. Here is an

example of the exact format it should follow:

commit a@dalea5al5ab613bf9961fd86f010cf74c7eeld
Date: Thu Nov 9 20:00:05 2017 -0800
A commit message.

commit 3e8bf1d794ca2e9ef8a4007275acf3751c7170f
Date: Thu Nov 9 17:01:33 2017 -0800
Another commit message.

commit e881c9575d180a215d1a636545b8fd9abfbld2b
Date: Wed Dec 31 16:00:00 1969 -0800
initial commit

4 G >

There is a === before each commit and an empty line after
it. As in real Git, each entry displays the unique SHA-1 id of
the commit object. The timestamps displayed in the
commits reflect the current timezone, not UTC; as a result,
the timestamp for the initial commit does not read
Thursday, January 1st, 1970, 00:00:00, but rather the
equivalent Pacific Standard Time. Display commits with the
most recent at the top. By the way, you'll find that the Java
classes java.util.Date and java.util.Formatter are
useful for getting and formatting times. Look into them

instead of trying to construct it manually yourself!

For merge commits (those that have two parent commits),

add a line just below the first, as in

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

20/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

vierge. 49/odl 1 Zcledl |l pdle. OSdl NOV 11 1£.9VU.VUU ZU 1/

-0800 Merged development into master.

where the two hexadecimal numerals following "Merge:"
consist of the first seven digits of the first and second
parents' commit ids, in that order. The first parent is the
branch you were on when you did the merge; the second is

that of the merged-in branch. This is as in regular Git.

Runtime: Should be linear with respect to the number of

nodes in head's history.

Failure cases: None

Dangerous?: No

Our line count: ~20

Here's a picture of the history of a particular commit. If the
current branch's head pointer happened to be pointing to that
commit, log would print out information about the circled

commits:

master

branch

History of this commit

The history ignores other branches and the future. Now that we
have the concept of history, let's refine what we said earlier
about the commit tree being immutable. It is immutable precisely
in the sense that the history of a commit with a particular id may

never change, ever. If you think of the commit tree as nothing

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 21/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

IS UidL edCIl niswory Is nmimnutldpie.

global-log

Usage: java gitlet.Main global-log

Description: Like log, except displays information about all
commits ever made. The order of the commits does not
matter. Hint: there is a useful method in gitlet.Utils that

will help you iterate over files within a directory.

Runtime: Linear with respect to the number of commits

ever made.
Failure cases: None
Dangerous?: No

Our line count: ~10

Usage: java gitlet.Main find [commit message]

Description: Prints out the ids of all commits that have the
given commit message, one per line. If there are multiple
such commits, it prints the ids out on separate lines. The
commit message is a single operand; to indicate a
multiword message, put the operand in quotation marks, as

for the commit command above.

Runtime: Should be linear relative to the number of

commits.

Failure cases: If no such commit exists, prints the error

message Found no commit with that message.
Dangerous?: No

Differences from real git: Doesn't exist in real git. Similar

effects can be achieved by grepping the output of log.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

22/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

status

e Usage: java gitlet.Main status

o Description: Displays what branches currently exist, and

marks the current branch with a *. Also displays what files
have been staged for addition or removal. An example of

the exact format it should follow is as follows.

=== Branches ===
*master
other-branch

=== Staged Files ===
wug.txt
wug2.txt

=== Removed Files ===
goodbye. txt

=== Modifications Not Staged For Commit ===
junk.txt (deleted)
wug3.txt (modified)

=== Untracked Files ===
random.stuff

There is an empty line between sections. Entries should be
listed in lexicographic order, using the Java string-
comparison order (the asterisk doesn't count). A file in the

working directory is "modified but not staged" if it is

Tracked in the current commit, changed in the working

directory, but not staged; or

Staged for addition, but with different contents than in the

working directory; or
Staged for addition, but deleted in the working directory; or

Not staged for removal, but tracked in the current commit

and deleted from the working directory.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 23/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

e wOrking airecLory oput neiner stdagea 10r aaaiuorn nor

tracked. This includes files that have been staged for

Navigation

removal, but then re-created without Gitlet's knowledge.
Introduction Ignore any subdirectories that may have been introduced,
Useful Links since Gitlet does not deal with them.

Overview of Gitlet The last two sections (modifications not staged and

untracked files) are extra credit, worth 1 point. Feel free to

Internal Structures])
leave them blank (leaving just the headers).

Detailed Spec of
Behavior

Runtime: Make sure this depends only on the amount of

data in the working directory plus the number of files

The Commands
staged to be added or deleted plus the number of

Miscellaneous Things branches.
to Know about the
Project e Failure cases: None

Dealing with Files

Dangerous?: No

Serialization Details Our line count: ~45

Testing

checkout
Understanding _]
Acceptance Tests Checkout is a general command that can do a few different

things depending on what its arguments are. There are 3
Design Document and))
Checkpoint possible use cases. In each section below, you'll see 3 bullet

points. Each corresponds to the respective usage of checkout.
Grader Details

o Usages:
Things to Avoid
1. java gitlet.Main checkout -- [file name]
Going Remote (Extra
Credit) 2. java gitlet.Main checkout [commit id] -- [file
The Remote name]
Commands

3. java gitlet.Main checkout [branch name]

Diffs (Extra Credit)
¢ Descriptions:

Diff Utility
1. Takes the version of the file as it exists in the head

commit, the front of the current branch, and puts it in

the working directory, overwriting the version of the

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 24/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet

Internal Structures

Project 3 | CS 61B Spring 2022

version ol e e 1s not staygea.

. Takes the version of the file as it exists in the commit

with the given id, and puts it in the working directory,
overwriting the version of the file that's already there
if there is one. The new version of the file is not

staged.

. Takes all files in the commit at the head of the given

branch, and puts them in the working directory,
Detailed Spec of

Behavior overwriting the versions of the files that are already

there if they exist. Also, at the end of this command,
The Commands . . .
the given branch will now be considered the current
branch (HEAD). Any files that are tracked in the

current branch but are not present in the checked-out

Miscellaneous Things
to Know about the
Project

branch are deleted. The staging area is cleared,

Dealing with Files .
unless the checked-out branch is the current branch

Serialization Details (see Failure cases below).

Testing ¢ Run times:

Understanding
Acceptance Tests

1. Should be linear relative to the size of the file being
checked out.

Design Document and

Checkpoint 2. Should be linear with respect to the total size of the

files in the commit's snapshot. Should be constant

Grader Details . . .
with respect to any measure involving number of

Things to Avoid commits. Should be constant with respect to the

Going Remote (Extra number of branches.
Credit)]

¢ Failure cases:
The Remote

Commands 1. If the file does not exist in the previous commit, abort,

printing the error message File does not exist in
Diffs (Extra Credit) that it
at commit.

Diff Utilit
I Y 2. If no commit with the given id exists, print No commit

with that id exists. Otherwise, if the file does not

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 25/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

10l 1alure case 1.

3. If no branch with that name exists, print No such
branch exists. If that branch is the current branch,
print No need to checkout the current branch. If
a working file is untracked in the current branch and
would be overwritten by the checkout, print There is
an untracked file in the way; delete it, or
add and commit it first. and exit; perform this

check before doing anything else.

» Differences from real git: Real git does not clear the
staging area and stages the file that is checked out. Also, it
won't do a checkout that would overwrite or undo changes

(additions or removals) that you have staged.

A [commit id] is, as described earlier, a hexadecimal numeral. A
convenient feature of real Git is that one can abbreviate commits

with a unique prefix. For example, one might abbreviate
addalea5al5ab613bf9961fd86T010ct74c7eed8

as
aldale

in the (likely) event that no other object exists with a SHA-1
identifier that starts with the same six digits. You should arrange
for the same thing to happen for commit ids that contain fewer
than 40 characters. Unfortunately, using shortened ids might
slow down the finding of objects if implemented naively (making
the time to find a file linear in the number of objects), so we won't
worry about timing for commands that use shortened ids. We
suggest, however, that you poke around in a .git directory
(specifically, .git/objects) and see how it manages to speed up
its search. You will perhaps recognize a familiar data structure

implemented with the file system rather than pointers.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

26/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

dred. ouerwise iiies scrieauied 10r aaaiuon or rerrnovdi reirriairn

Navigation .

e Dangerous?: Yes!
Introduction

e Our line counts:

Useful Links

o ~15
Overview of Gitlet

o ~5
Internal Structures

o ~15

Detailed Spec of
Behavior

branch
The Commands
e Usage: java gitlet.Main branch [branch name]

Miscellaneous Things
to Know about the o Description: Creates a new branch with the given name,

Project and points it at the current head node. A branch is nothing

Dealing with Files more than a name for a reference (a SHA-1 identifier) to a

commit node. This command does NOT immediately switch
Serialization Details

to the newly created branch (just as in real Git). Before you
Testing ever call branch, your code should be running with a

Understanding default branch called "master”.

Acceptance Tests
e Runtime: Should be constant relative to any significant

Design Document and
Checkpoint

measure.

+ Failure cases: If a branch with the given name already
Grader Details

exists, print the error message A branch with that name

Things to Avoid already exists.

Going Remote (Extra « Dangerous?: No
Credit)

e Our line count;: ~10
The Remote

Commands All right, let's see what branch does in detail. Suppose our state
Diffs (Extra Credit) looks like this:
Diff Utility

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 27/69

3/17/25, 10:34 AM

Main Course Info

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Staff Screencasts Beacon GitBugs Resources Piazza
wug.txt wug.tet wug.tet

This is a wug.

This is awg

This is a wug

Now we call java gitlet.Main branch cool-beans. Then we

get this:
*master cool-beans
wug.txt wug.txt wug.txt

| This is a wug.

Thisis awg This is a wug

Hmm... nothing much happened. Let's switch to the branch with

java gitlet.Main checkout cool-beans:

master *cookbeans

wug.txt wug.txt

This is a wug.

This is a wg

This is a wug

Nothing much happened again?! Okay, say we make a commit

now. Modify some files, then java gitlet.Main add... then

java gitlet.Main commit...

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

28/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

nne. vvnaLs goling on« ividyoe 1 srnouid go pack Lo my ower
branch with java gitlet.Main checkout master:

*master cool-beans

gt e

wug.txt wug.txt wug.txt

Now | make a commit...

*master

This |
definitely a
wug.

Phew! So that's the whole idea of branching. Did you catch
what's going on? All that creating a branch does is to give us a
new pointer. At any given time, one of these pointers is
considered the currently active pointer, also called the HEAD
pointer (indicated by *). We can switch the currently active head
pointer with checkout [branch name]. Whenever we commit, it
means we add a child commit to the currently active HEAD
commit, even if a child commit is already there. This naturally
creates branching behavior, since one parent commit can have

multiple children commits.

Make sure that the behavior of your branch, checkout, and
commit match what we've described above. This is pretty core
functionality of Gitlet that many other commands will depend
upon. If any of this core functionality is broken, very many of our

autograder tests won't work!

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

29/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Usage: java gitlet.Main rm-branch [branch name]

Description: Deletes the branch with the given name. This
only means to delete the pointer associated with the
branch; it does not mean to delete all commits that were

created under the branch, or anything like that.

Runtime: Should be constant relative to any significant

measure.

Failure cases: If a branch with the given name does not
exist, aborts. Print the error message A branch with that
name does not exist. If you try to remove the branch
you're currently on, aborts, printing the error message

Cannot remove the current branch.
Dangerous?: No

Our line count: ~15

reset

e Usage: java gitlet.Main reset [commit id]

« Description: Checks out all the files tracked by the given

commit. Removes tracked files that are not present in that
commit. Also moves the current branch's head to that
commit node. See the intro for an example of what
happens to the head pointer after using reset. The [commit
id] may be abbreviated as for checkout. The staging area
is cleared. The command is essentially checkout of an
arbitrary commit that also changes the current branch
head.

Runtime: Should be linear with respect to the total size of
files tracked by the given commit's snapshot. Should be
constant with respect to any measure involving number of

commits.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

30/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

CcoOmmlT W1TNn TnNatT 1d eX1STS. Il d WOIKINg lie Is

untracked in the current branch and would be overwritten

Navigation

by the reset, print There is an untracked file in the
Introduction way; delete it, or add and commit it first. and exit;
Useful Links perform this check before doing anything else.

Overview of Gitlet * Dangerous?: Yes!

Internal Structures » Differences from real git: This command is closest to

using the --hard option, as in git reset --hard [commit

Detailed Spec of
Behavior hash].

The Commands e Our line count: ~10

Miscellaneous Things

to Know about the merge

Project e Usage: java gitlet.Main merge [branch name]

Dealing with Files « Description: Merges files from the given branch into the
Serialization Details current branch. This method is a bit complicated, so here's

a more detailed description:
Testing

o First consider what might be called the split point of
Understanding)
Acceptance Tests the current branch and the given branch. For

example, if master is the current branch and branch
Design Document and _)
Checkpoint is the given branch:

wug.txt wug.txt <):|

This is a wug. T,:,‘usgl

wug.txt

Grader Details

[

Things to Avoid

Going Remote (Extra > - E p —
Credit) 4 = This is a wug!

The Remote J

Commands Split point

Diffs (Extra Credit) The split point is a latest common ancestor of the

Diff Utility current and given branch heads:

s A common ancestor is a commit to which there

is a path (of 0 or more parent pointers) from

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 31/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

= A /atest common ancestor is a common
ancestor that is not an ancestor of any other
common ancestor. For example, although the
leftmost commit in the diagram above is a
common ancestor of master and branch, it is
also an ancestor of the commit immediately to
its right, so it is not a latest common ancestor. If
the split point is the same commit as the given
branch, then we do nothing; the merge is
complete, and the operation ends with the
message Given branch is an ancestor of
the current branch. If the split point is the
current branch, then the effect is to check out
the given branch, and the operation ends after
printing the message Current branch fast-
forwarded. Otherwise, we continue with the

steps below.

o Any files that have been modified in the given branch

since the split point, but not modified in the current
branch since the split point should be changed to
their versions in the given branch (checked out from
the commit at the front of the given branch). These
files should then all be automatically staged. To
clarify, if a file is "modified in the given branch since
the split point" this means the version of the file as it
exists in the commit at the front of the given branch
has different content from the version of the file at the

split point.

Any files that have been modified in the current
branch but not in the given branch since the split

point should stay as they are.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 32/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

ana givern orancii in wue sdine way (l.e., ooun 1es rnow
have the same content or were both removed) are left
unchanged by the merge. If a file was removed from
both the current and given branch, but a file of the
same name is present in the working directory, it is
left alone and continues to be absent (not tracked nor

staged) in the merge.

Any files that were not present at the split point and
are present only in the current branch should remain

as they are.

Any files that were not present at the split point and
are present only in the given branch should be

checked out and staged.

Any files present at the split point, unmodified in the
current branch, and absent in the given branch

should be removed (and untracked).

Any files present at the split point, unmodified in the
given branch, and absent in the current branch

should remain absent.

Any files modified in different ways in the current and
given branches are in conflict. "Modified in different
ways" can mean that the contents of both are
changed and different from other, or the contents of
one are changed and the other file is deleted, or the
file was absent at the split point and has different
contents in the given and current branches. In this

case, replace the contents of the conflicted file with

<<<<<<< HEAD
contents of file in current branch

contents of file in given branch
>>>5>>>

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

33/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

COILerLs) dra siage uie resuil. iredt d aeietea lie in
a branch as an empty file. Use straight concatenation
here. In the case of a file with no newline at the end,

you might well end up with something like this:

<<<<<<< HEAD
contents of file in current branch=======
contents of file in given branch>>>>>>>

This is fine; people who produce non-standard,
pathological files because they don't know the
difference between a line terminator and a line

separator deserve what they get.

Once files have been updated according to the
above, and the split point was not the current branch
or the given branch, merge automatically commits
with the log message Merged [given branch name]
into [current branch name]. Then, if the merge
encountered a conflict, print the message
Encountered a merge conflict. on the terminal
(not the log). Merge commits differ from other
commits: they record as parents both the head of the
current branch (called the first parent) and the head
of the branch given on the command line to be

merged in.

There is one complication in the definition of the split
point. You may have noticed that we referred to "a",
rather than "the" latest common ancestor. This is
because there can be more than one in the case of

"criss-cross merges", such as this:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

34/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Initial

Here, the solid lines are first parents and the dashed

lines are the merged-in parents. Both the commits

pointed by blue arrows above are latest common

ancestors. Here's how it was created:

java gitlet.Main
java gitlet.Main
[various edits..
java gitlet.Main
java gitlet.Main
[various edits..
java gitlet.Main
java gitlet.Main
java gitlet.Main
[various edits..
java gitlet.Main
java gitlet.Main
[various edits..
java gitlet.Main
java gitlet.Main
[various edits..
java gitlet.Main

]

init
branch branch
commit "B"

checkout branch

-]

commit "C"
branch temp
merge master # Create comm

]

]

]

commit "H"

checkout master

commit "D"

merge temp # Create comm
commit "G"

4 G >

Now if we want to merge branch into master, we have

two possible split points: the commits marked by the

two blue arrows. You might want to think about why it

can make a difference which gets used as the split

point. We'll use the following rule to choose which of

multiple possible split points to use:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

35/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

LO e neda ol wue currernt prancn (udat is, 1s
reachable by following the fewest parent

pointers along some path).

= |f multiple candidates are at the same closest
distance, choose any one of them as the split
point. (We will make sure that this only happens
in our test cases when the resulting merge
commit is the same with any of the closest

choices.)

So in this example, we would choose commit C as
the split point when merging branch into master,
since there is a shorter path from G to C than from G
to B. If instead we were currently on branch and
merging in branch master, we could use either
commit B or C, since both are the same distance

from commit H.

By the way, we hope you've noticed that the set of commits
has progressed from a simple sequence to a tree and now,

finally, to a full directed acyclic graph.

Runtime: O(N lg N + D), where N is the total number
of ancestor commits for the two branches and D is the

total amount of data in all the files under these commits.

Failure cases: If there are staged additions or removals
present, print the error message You have uncommitted
changes. and exit. If a branch with the given name does
not exist, print the error message A branch with that
name does not exist. If attempting to merge a branch
with itself, print the error message Cannot merge a branch
with itself. If merge would generate an error because
the commit that it does has no changes in it, just let the

normal commit error message for this go through.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

36/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

OVEIWrILEN Or Jeleleu Dy Uie Imeryge, prnt inere 1s an
untracked file in the way; delete it, or add and
commit it first. and exit; perform this check before

doing anything else.
+ Dangerous?: Yes!
« Differences from real git: Real Git does a more subtle job

of merging files, displaying conflicts only in places where

both files have changed since the split point.

Real Git has a different way to decide which of multiple

possible split points to use.

Real Git will force the user to resolve the merge conflicts
before committing to complete the merge. Gitlet just
commits the merge, conflicts and all, so that you must use

a separate commit to resolve problems.

Real Git will complain if there are unstaged changes to a
file that would be changed by a merge. You may do so as

well if you want, but we will not test that case.
e Our line count: ~70

¢ Conceptual Check

Miscellaneous Things to Know
about the Project

Phew! That was a lot of commands to go over just now. But don't
worry, not all commands are created equal. You can see for each
command the approximate number of lines we took to do each
part (that this only counts code specific to that command -- it
doesn't double-count code reused in multiple commands). You
shouldn't worry about matching our solution exactly, but hopefully

it gives you an idea about the relative time consumed by each

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 37/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

aon tieave IL1or uie idast minute!

This is an ambitious project, and it would not be surprising for
you to feel lost as to where to begin. Therefore, feel free to
collaborate with others a little more closely than usual, with the

following caveats:

« Acknowledge all collaborators in comments near the

beginning of your gitlet/Main. java file.

o Don't share specific code; all collaborators must produce
their own versions of the algorithms they come up with, so

that we can see they differ.

The Piazza megathreads typically get very long for Gitlet, but
they are full of very good conversation and discussion on the
approach for particular commits. In this project more than any
you should take advantage of the size of the class and see if you
can find someone with a similar question to you on the
megathread. It's very unlikely that your question is so unique to
you that nobody else has had it (unless it is a bug that relates to

your design, in which case you should submit a Gitbug).

By now this spec has given you enough information to get
working on the project. But to help you out some more, there are

a couple of things you should be aware of:

Dealing with Files

This project requires reading and writing of files. In order to do
these operations, you might find the classes java.io.File and
java.nio.file.Files helpful. Actually, you may find various
things in the java.io and java.nio packages helpful. Be sure to
read the gitlet.Utils package for other things we've written for
you. If you do a little digging through all of these, you might find a

couple of methods that will make the 1/0O portion of this project

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 38/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

WIILETs, scdliners, or siuredlns, you re Imndking wmnings Imnore

complicated than need be.

Serialization Details

If you think about Gitlet, you'll notice that you can only run one
command every time you run the program. In order to
successfully complete your version-control system, you'll need to
remember the commit tree across commands. This means you'll
have to design not just a set of classes to represent internal
Gitlet structures during execution, but you'll need an analogous
representation as files within your .gitlet directories, which will

carry across multiple runs of your program.

As indicated earlier, the convenient way to do this is to serialize
the runtime objects that you will need to store permanently in
files. In Java, this simply involves implementing the

java.io.Serializable interface:

import java.io.Serializable;

class MyObject implements Serializable {
}

This interface has no methods; it simply marks its subtypes for
the benefit of some special Java classes for performing I/O on

objects. For example,

import java.io.File;

import java.io.FileOutputStream;
import java.io.IOException;

import java.io.ObjectOutputStream;

MyObject obj =;

File outFile = new File(someFileName);
try {

ObjectOutputStream out =
new ObjectOutputStream(new FileOutputStrea
out.writeObject(obj);

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 39/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

will convert obj to a stream of bytes and store it in the file whose
name is stored in someFileName. The object may then be

reconstructed with a code sequence such as

import java.io.File;

import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;

MyObject obj;
File inFile = new File(someFileName);

try {
ObjectInputStream inp =

new ObjectInputStream(new FileInputStream(
obj = (MyObject) inp.readObject();
inp.close();
} catch (IOException | ClassNotFoundException excp

ééj = null;
}
4 G >

The Java runtime does all the work of figuring out what fields

need to be converted to bytes and how to do so.

There is, however, one annoying subtlety to watch out for: Java
serialization follows pointers. That is, not only is the object you
pass into writeObject serialized and written, but any object it
points to as well. If your internal representation of commits, for
example, represents the parent commits as pointers to other
commit objects, then writing the head of a branch will write all the
commits (and blobs) in the entire subgraph of commits into one
file, which is generally not what you want. To avoid this, don't use
Java pointers to refer to commits and blobs in your runtime
objects, but instead use SHA-1 hash strings. Maintain a runtime
map between these strings and the runtime objects they refer to.
You create and fill in this map while Gitlet is running, but never

read or write it to a file.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

40/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

COITITILS dS well ds OSnA-1 SUINgs L0 davolda e potuier drna
execution time required to look them up each time. You can store
such pointers in your objects while still avoiding having them

written out by declaring them "transient", as in
private transient MyCommitType parentl;

Such fields will not be serialized, and when back in and
deserialized, will be set to their default values (null for reference
types). You must be careful when reading the objects that
contain transient fields back in to set the transient fields to

appropriate values.

Unfortunately, looking at the serialized files your program has
produced with a text editor (for debugging purposes) would be
rather unrevealing; the contents are encoded in Java's private
serialization encoding. We have therefore provided a simple
debugging utility program you might find useful: gitlet.DumpObj.

See the Javadoc comment on gitlet/DumpObj. java for details.

Testing

NOTE (4/17/22): We have pushed a change to the testing
Makefile so that the command make check will run your created
tests in student_tests as well as the ones in samples. Please
run git fetch shared and git merge shared/proj3 -m "some

message here") to get these new changes locally.

As usual, testing is part of the project. Be sure to provide your
own acceptance tests for each of the commands, covering all the
specified functionality. Also, feel free to add unit tests to
UnitTest.java or other testing classes it invokes in its main
method. We don't provide any unit tests for Gitlet since unit tests

are very dependent on your implementation.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

41/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

LO write dccepldliCe lesis. Testlng/tester.py. AS Wil Froject
#2, this interprets testing files with an . in extension. As with
projects 0-2, the following commands will run your unit tests,

acceptance tests, or the entire testing suite respectively:

make unit
make acceptance
make check

Furthermore, we've added an additional Makefile target:
make doc

This command will generate a group of files based on your
current project code that represents the "design" of your code.
For instance, if you have some class A. java in your project, one
of the files that make doc generates will be a file that clearly
names all of the methods, variables, and constants that you have
so farin A. java. This file will be called allclasses-index.html,

so try opening it in a web browser to see what was generated!

If you'd like to run a single test, within the testing subdirectory,

running the commands (after first running make)

cd testing
python3 tester.py --verbose FILE.in ...

where FILE.in ... is a list of specific .in files you want to
check, will provide additional information such as what your

program is outputting. The command
python3 tester.py --verbose --keep FILE.in

will, in addition, keep around the directory that tester.py
produces so that you can examine its files at the point the tester

script detected an error.

We've provided some examples in the directory

testing/samples. Don't put your own tests in that subdirectory;

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 42/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Our Lests vs your ests (wnici imndy pe puggy!). rut dil your .1n
files in another folder called student_tests within the testing

directory.

In effect, the tester implements a very simple domain-specific

language (DSL) that contains commands to

Set up or remove files from a testing directory;

Run java gitlet.Main;

Check the output of Gitlet against a specific output or a

regular expression describing possible outputs;

Check the presence, absence, and contents of files.

Running the command
python3 tester.py

(with no operands, as shown) in the testing directory will provide

a message documenting this language.

As usual, we will test your code on the the instructional

machines, so do be sure it works there!

We've added a few things to the Makefile to adjust for
differences in people's setups. If you are on Windows, you can

still use our makefile unchanged by using
make PYTHON=python check

You can pass additional flags to tester.py with, for example,
make TESTER_FLAGS="--show=all --keep"

Lastly, we also have a way of using the IntelliJ debugger to
debug Gitlet acceptance tests. This may seem impossible, since
we run everything from the command line; however, IntelliJ

provides a feature called “Remote JVM Debugging” that will

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 43/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

leslis.

A walk-through of the rest of these testing details can be found
here. This video goes over all the steps listed here in the spec
but for the Capers lab, so if you find yourself confused on the
directions then check it out. The Capers lab was lab 6 in Spring

2021 when this video was made, but for us it is lab 12.

Without JUnit tests, you may be wondering how to debug your

code. We'll walk you through how you will do that in Gitlet.

To debug an acceptance test, we first need to let IntelliJ know
that we want to debug remotely. Navigate to your Intellid and
open your proj3 project if you don't have it open already. At the

top, go to "Run" -> "Run":

Refactor Build Run Tools Git Window Help InputBo

P Run...

& Debug...

™ Profile...

= Attach to Process...
Edit Configurations...

Debugging Actions
Toggle Breakpoint
&' View Breakpoints...

Import Tests from File...
Show Coverage Data...

You'll get a box asking you to Edit Configurations that will look

like the below:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 44/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

Navigation

Introduction

Yours might have more or less of those boxes with other names
Useful Links

if you tried running a class within IntelliJ already. If that's the

Overview of Gitlet case, just click the one that says "Edit Configurations"

Internal Structures In this box, you'll want to hit the "+" button in the top left corner

Detailed Spec of and select "Remote JVM Debug." It should now look like this:
Behavior

+ - B K
5 Remote JVM Debug Name: | Gitlet Remote Debugging Allow parallel run Store as project file

The Commands 51Gitlet Remote Debugging

. . Debugger mode: | Attach to remote JVM ~
Miscellaneous Things b
to Know about the
Project

Host: localhost Port: | 5005

Command line arguments for remote JVM:
—-agentlib: jdwp=transport=dt_socket,server=y, suspend=n,address=x*:5005

Use module classpath: proj3

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Show this page [v¥| Activate tool window

Design Document and

Checkpoint We just need the default settings. You should add a descriptive

name in the top box, perhaps "Gitlet Remote Debug". After you
Grader Details) .)

add a name, go ahead and hit "Apply" and then exit from this
Things to Avoid screen. Before we leave IntelliJ, place a breakpoint in the main

Going Remote (Extra method of the Main class, so we can actually debug. Make sure

Credit) this breakpoint will actually be reached:; just put it on the first line

The Remote of the main method.

Commands . . I .
Now you'll navigate to the testing directory within your terminal.

Diffs (Extra Credit) The script that will connect to the IntelliJ JVM is tester.py with

Dff Utility the --debug flag: use the following command to launch the

testing script:

python3 tester.py --debug samples/test@l-init.in

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 45/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

L1n e, 11 youa like e . g1tietT lolder 10 sldy diler e lest Is

completed to investigate its contents, then use the --keep flag:

python3 tester.py --keep --debug samples/test@l-init.i
J G >

For our example it doesn't matter what you do; we've just
included it in case you'd like to take a look around. By default,

the .gitlet thatis generated is deleted.

If you see an error message, then it means you are probably not
in the testing directory. Check those two things, and if you're

still confused then ask a TA.

Otherwise, you should be ready to debug! You'll see something
like this:

test@l-init: You are in debug mode.
In this mode, you will be shown each command from
If you would like to step into and debug the comma
Once you have done so, go back to IntelliJ and c
If you would like to move on to the next command,
[line 3]: gitlet init
>>>

4 G >

The text above contains helpful tips. What we see next is the
name of the .1in file we're debugging, then a series of lines that

begin with [1ine #] and >.

Lines that begin with [1ine #] are the gitlet commands that will
be run on your Main class, i.e. a specific execution of your
program. These correspond to the commands we saw in the .in

file on the right side of the >.

Lines that begin with >>> are for you to enter debug commands

on. The 2 commands are listed above.

Remember that each input file will list multiple commands and
therefore multiple executions of our program. We need to first

figure out what command is the culprit.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

46/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

cormimndana wiluout aepugging i, You cdi wmnink o1 1L ds oringing

you to the next command.

One of these will error: either your code will produce a runtime

error, or your output wasn't the same. For example:

> python3 testing/tester.py --debug --keep testing/sam

test@l-init: You are in debug mode.
In this mode, you will be shown each command from
If you would like to step into and debug the comma
Once you have done so, go back to IntelliJ and cli
If you would like to move on to the next command,

[line 3]: gitlet init

>>> n

ERROR (file or directory .gitlet not present)

Ran 1 tests. @ passed.
4 D >

For us, it was our first command. Notice that we had the --keep
flag enabled, so we could now investigate the saved directory
testo@l- init_o to see what happened. If we debugged again
with the --keep flag on the same test, we'll get a new directory

test@l-init_1 and so on.

Once you've found the command that errors, do it all again
except now you can hit s (short for "step") to "step into" that
command, so to speak. Really what happens is the IntelliJ JVM
waits for our script to start and then attaches itself to that
execution. So after you press s, you should hit the "Debug"
button in IntelliJ. Make sure in the top right the configuration is
set to the name of the remote JVM config you added earlier (this

is why it is helpful to give it a good name).

This will stop your program at wherever your breakpoint was as
it's trying to run that command you hit s on. Now you can use
your normal debugging techniques to step around and see if
you're improperly reading/writing some data or some other

mistake.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

47/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

aig everyuing it wds supposed LO. I mese Cdses, IL Imedris you
had a bug on a previous command with persistence. For
example: let's say your second invocation looks like it is doing
everything correctly, except when it tries to read the initial
commit (that should have been persistently stored in a file) it
receives a blank file (or maybe the file isn't even there). Then,
even though the second execution of the program has output
that doesn't match the expected, it was really the previous (first)
execution that has the bug since it didn't properly persist the

data.

These are very common since persistence is a new and initially
tricky concept, so when debugging, your first priority is to find the
execution that produced the bug. If you didn't, then you would be
debugging the second (non-buggy) execution for hours to no

avail, since the bug already happened.

Understanding Acceptance
Tests

The first thing we'll ask for in Gitbugs and when you come to
receive help in Office Hours is a test that you're failing, so it's
paramount that you learn to write tests in this project. We've
done a lot of work to make this as painless as possible, so
please take the time to read through this section so you can

understand the provided tests and write good tests yourself.

The provided tests are hardly comprehensive, and you'll
definitely need to write your own tests to get a full score on the

project. To write a test, let's first understand how this all works.

Here is the structure of the testing directory:

— Makefile
— student_tests <==== Your .in fi

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 48/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

— test@2-basic-checkout.in
— test@3-basic-log.in

— test@4-prev-checkout.in
— definitions.inc

— src <==== Contains fi
— notwug.txt
— wug.txt

— runner.py <==== Script to h

Just like Capers, these tests work by creating a temporary
digectonyawithimgthey t e s t i ngjdireetonyandmunning the commangs
specified by a .in file. If you use the --keep flag, this temporary

directory will remain after the test finishes so you can inspect it.

Unlike Capers, we'll need to deal with the contents of files in our
working directory. So in this testing folder, we have an
additional folder called src. This directory stores many pre-filled
.txt files that have particular contents we need. We'll come back
to this later, but for now just know that src stores actual file
contents. samples has the .1in files of the sample tests (which
are the checkpoint tests). When you create your own tests, you
should add them to the student_tests folder which is initially

empty in the skeleton.

The . in files have more functions in Gitlet. Here is the

explanation straight from the tester.py file:

... A comment, producing no effect.

FILE Include. Replace this statement with the conte
interpreted relative to the directory containing

DIR Create, if necessary, and switch to a subdirect
the main directory for this test. If DIR is mis
back to the default directory. This command is
intended to let you set up remote repositories.

[

(@]

TN Set the timeout for gitlet commands in the rest
seconds.
+ NAME F
Copy the contents of src/F into a file named NAM
- NAME

Delete the file named NAME.
> COMMAND OPERANDS
LINE1
LINE2

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

49/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

Run gitlet.Main with COMMAND ARGUMENTS as its pa
its output with LINE1, LINE2, etc., reporting an

NaV|gat|0n "sufficient" discrepancy. The <<< delimiter may

an asterisk (*), in which case, the preceding 1li

Introduction Python regular expressions and matched according

or JAR file containing the gitlet.Main program i

Useful Links in directory DIR specified by --progdir (default
= NAME F

Check that the file named NAME is identical to s

Overview of Gitlet .
error if not.

* NAME
Internal Structures Check that the file NAME does not exist, and rep
does.
Detailed Spec of E NAME
Behavior Check that file or directory NAME exists, and re
does not.
The Commands D VAR "VALUE"
Defines the variable VAR to have the literal val
Miscellaneous Things taken to be a raw Python string (as in r"VALUE")
to Know about the o o T
Project

] o Don't worry about the Python regular expressions thing
Dealing with Files

mentioned in the above description: we'll show you that it's fairly

Serialization Details straightforward and even go through an example of how to use it.
Testing Let's walk through a test to see what happens from start to finish.
Understanding Let's examine test@2-basic-checkout.in.

Acceptance Tests

Design Document and Sample test

Checkpoint When we first run this test, a temporary directory gets created
Grader Details that is initially empty. Our directory structure is now:

Things to Avoid .
— Makefile

Going Remote (Extra — student_tests
Credit) — samples
— test@l-init.in
The Remote — test@2-basic-checkout.in
Commands — test@3-basic-log.in
— test@4-prev-checkout.in
Diffs (Extra Credit) — definitions.inc
— src
Diff Utility — notwug.txt
— wug.txt
— test@2-basic-checkout_@ <==== Just create

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 50/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

Navigation
avigatio This temporary directory is the Gitlet repository that will be used
Introduction for this execution of the test, so we will add things there and run
. all of our Gitlet commands there as well. If you ran the test a
Useful Links

second time without deleting the directory, it'll create a new

Overview of Gitlet directory called test@2-basic-checkout_1, and so on. Each

Internal Structures execution of a test uses it's own directory, so don't worry about

tests interfering with each other as that cannot happen.
Detailed Spec of

Behavior The first line of the test is a comment, so we ignore it.

% .

Miscellaneous Things

to Know about the > init
Project <<
Dealing with Files This shouldn't have any output as we can tell by this section not

o) having any text between the first line with > and the line with <<«<.
Serialization Details

But, as we know, this should create a .gitlet folder. So our
Testing directory structure is now:
Understanding

Acceptance Tests .
— Makefile

— student_tests

— samples

— test@l-init.in

— test@2-basic-checkout.in
— test@3-basic-log.in

— test@4-prev-checkout.in
— definitions.inc

Design Document and
Checkpoint

Grader Details

Things to Avoid

Going Remote (Extra }_ SE notwug. txt
Credit) — wug.txt
— test@2-basic-checkout_0
The Remote L— .gitlet <==== Just created
Commands — runner.py
— tester.py

Diffs (Extra Credit)
4 G >

Diff Utilit
y The next section is:

+ wug.txt wug.txt

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 51/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

nara siae 1roim e src airecLlory dna copy Is Corniteris o uie lie
on the left-hand side in the temporary directory (creating it if it
doesn't exist). They happen to have the same name, but that
doesn't matter since they're in different directories. After this

command, our directory structure is now:

— Makefile

— student_tests

— samples

— test@l-init.in

— test@2-basic-checkout.in
— test@3-basic-log.in

— test@4-prev-checkout.in
— definitions.inc

— notwug.txt

— wug.txt

— test@2-basic-checkout_o

— .gitlet

— wug.txt <==== Just created
— runner.py

— tester.py

4 G b

Now we see what the src directory is used for: it contains file
contents that the tests can use to set up the Gitlet repository
however you wants. If you want to add special contents to a file,
you should add those contents to an appropriately named file in
src and then use the same + command as we have here. It's
easy to get confused with the order of arguments, so make sure
the right-hand side is referencing the file in the src directory, and
the left-hand side is referencing the file in the temporary

directory.

The next section is:

> add wug.txt
<<

As you can see, there should be no output. The wug.txt file is

now staged for addition in the temporary directory. At this point,

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 52/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Das1C-CcnecCcKout_v/ .g81T1eT alrecLory since youli rneea o

somehow persist the fact that wug. txt is staged for addition.

The next section is:

> commit "added wug"
<<<

And, again, there is no output, and, again, your directory

structure within . gitlet might change.

The next section is:
+ wug.txt notwug.txt

Since wug. txt already exists in our temporary directory, its

contents changes to be whatever was in src/notwug.txt.

The next section is

> checkout -- wug.txt
<<<

Which, again, has no output. However, it should change the
contents of wug.txt in our temporary directory back to its original
contents which is exactly the contents of src/wug.txt. The next

command is what asserts that:
= wug.txt wug.txt

This is an assertion: if the file on the left-hand side (again, this is
in the temporary directory) doesn't have the exact contents of the
file on the right-hand side (from the src directory), the testing

script will error and say your file contents are not correct.

There are two other assertion commands available to you:
E NAME

Will assert that there exists a file/folder named NAME in the

temporary directory. It doesn't check the contents, only that it

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

53/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

* NAME

Will assert that there does NOT exist a file/folder named NAME in
the temporary directory. If there does exist a file/folder with that

name, the test will fail.

That happened to be the last line of the test, so the test finishes.
If the --keep flag was provided, the temporary directory will
remain, otherwise it will be deleted. You might want to keep it if
you suspect your .gitlet directory is not being properly setup or

there is some issue with persistence.

Setup for a test

As you'll soon discover, there can be a lot of repeated setup to
test a particular command: for example, if you're testing the

checkout command you need to:
1. Initialize a Gitlet Repository
2. Create a commit with a file in some version (v1)

3. Create another commit with that file in some other version
(v2)

4. Checkout that file to v1

And perhaps even more if you want to test with files that were

untracked in the second commit but tracked in the first.

So the way you can save yourself time is by adding all that setup

in a file and using the I command. Say we do that here:

Initialize, add, and commit a file.
> init

<<

+ a.txt wug.txt

> add a.txt

<<

> commit "a is a wug"

<<<

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 54/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

dairecLory, out witn d e extensliorn .1nc, so Imnayobe we rnadire it
samples/commit_setup.inc. If we gave it the file extension .1in,
our testing script will mistake it for a test and try to run it

individually. Now, in our actual test, we simply use the command:
I commit_setup.inc

This will have the testing script run all of the commands in that
file and keep the temporary directory it creates. This keeps your

tests relatively short and thus easier to read.

We've included one .inc file called definitions.inc that will set
up patterns for your convenience. Let's understand what patterns

are.

Pattern matching output

The most confusing part of testing is the output for something

like log. There are a few reasons why:

1. The commit SHA will change as you modify your code and
hash more things, so you would have to continually modify

your test to keep up with the changes to the SHA.

2. Your date will change every time since time only moves

forwards.
3. It makes the tests very long.

We also don't really care the exact text: just that there is some
SHA there and something with the right date format. For this

reason, our tests use pattern matching.

This is not a concept you will need to understand, but at a high
level we define a pattern for some text (i.e. a commit SHA) and
then just check that the output has that pattern (without caring

about the actual letters and numbers).

Here is how you'd do that for the output of 1og and check that it

matches the pattern:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

55/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

4 ULl LIl LI VIID e LI

You would add your lines here that create commits wi
specified messages. We'll omit this for this example
> log

${COMMIT_HEAD}
${DATE}
added wug

${COMMIT_HEAD}
${DATE}
initial commit

<<<*
4 G []

The section we see is the same as a normal Gitlet command,
except it ends in <<<* which tells the testing script to use

patterns. The patterns are enclosed in ${PATTERN_NAME}.

All the patterns are defined in samples/definitions.inc. You
don't need to understand the actual pattern, just the thing it
matches. For example, HEADER matches the header of a commit

which should look something like:
commit fc26c386f550fc17a0d4d359d70bae33c47c54b9

That's just some random commit SHA.

So when we create the expected output for this test, we'll need
to know how many entries are in this log and what the commit

messages are.

You can do similar things for the status command:

I definitions.inc

Add commands here to setup the status. We'll omit th
> status

=== Branches ===

*master

Staged Files ===

+

. TX

(8¢}

=== Removed Files ===

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

56/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

=== Untracked Files ===
${ARBLINES}

The pattern we used here is ARBLINES which is arbitrary lines. If
you actually care what is untracked, then you can add that here
without the pattern, but perhaps we're more interested in seeing

g.txt staged for addition.

Notice the * on the branch master. Recall that in the status
command, you should prefix the HEAD branch with a *. If you
uSe & pattern, youll need to replace this ~with a \<in the
expected output. The reason is out of the scope of the class, but
it is called "escaping" the asterisk. If you don't use a pattern (i.e.
your command ends in <<< not <<<*, then you can use the *

without the \).

The final thing you can do with these patterns is "save" a
matched portion. Warning: this seems like magic and we don't
care at all if you understand how this works, just know that it
does and it is available to you. You can copy and paste the
relevant part from our provided tests so you don't need to worry
too much about making these from scratch. With that out of the

way, let's see what this is.

If you're doing a checkout command, you need to use the SHA
identifier to specify which commit to checkout to/from. But
remember we used patterns, so we don't actually know the SHA
identifier at the time of creating the test. That is problematic.
We'll use teste4-prev-checkout.in to see how you can

"capture"” or "save" the SHA:

I definitions.inc
Each ${COMMIT_HEAD} captures its commit UID.
> log

${COMMIT_HEAD}
${DATE}

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

57/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

${COMMIT_HEAD}
${DATE}
version 1 of wug.txt

${COMMIT_HEAD}
${DATE}
initial commit

<<<*

This will set up the UID (SHA) to be captured after the log
command. So right after this command runs, we can use the D

command to define the UIDs to variables:

UID of second version

D UID2 "${1}"
UID of first version
D UID1 "${2}"

Notice how the numbering is backwards: the numbering begins
at 1 and starts at the top of the log. That is why the current
version (i.e. second version) is defined as "${1}". We don't care

about the initial commit, so we don't bother capturing it's UID.

Now we can use that definition to checkout to that captured SHA:

> checkout ${UID1} -- wug.txt
<<

And now you can make your assertions to ensure the checkout

was successful.

Testing conclusion

There are many more complex things you can do with our testing
script, but this is enough to write very good tests. You should use
our provided tests as an example to get started, and also feel
free to discuss on Piazza high level ideas of how to test things.

You may also share your . in files, but please make sure they're

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 58/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

Swaerits drna sidii cdi see wiidl 1s going orl.

Design Document and
Checkpoint

Since you are not working from a substantial skeleton this time,
we are asking that everybody submit a design document
describing their implementation strategy. It is not graded, but we
will insist on having it before helping you with bugs in your
program (in Office Hours or via Gitbugs) . See Lab 13 for details

on writing a high quality design document.

There will be an initial required checkpoint for the project, due
Friday 4/22 at 11:59PM. The checkpoint is worth 4 points. It
consists of a programming portion, as well as a conceptual quiz

on Gradescope.

You can complete the conceptual quiz on Gradescope by

clicking on the assignment titled Projet 3: Gitlet Checkpoint Quiz.

The quiz is out of 1 point, and tests your understanding of the
Gitlet commands. You have unlimited tries to complete the quiz
before the deadline, and should see feedback on the answers
you choose. The project lateness policy will not apply to the
checkpoint quiz, so any late quizzes will receive a score of
0.

For the remaining 3 points from the checkpoint, you can submit
the programming portion using the tag proj3a- n (where, as
usual, n is simply an integer.) The checkpoint autograder will
check that

¢ Your program compiles.

e You pass the sample tests from the skeleton:

testing/samples/*.in. These require you to implement

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

59/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

[commlT 1d| -- |[T1llLe name], dna Log.
In addition, it will comment on (but not score):

* Whether you pass style checks (it will ignore FIXME

comments for now; we won't in the final submission.)
¢ Whether there are compiler warning messages.

e Whether you pass your own unit and acceptance tests (as

run by make check).
We wiill score these in your final submission.

For the checkpoint grader, when it is released on Tuesday 4/12,
you will be able to submit once every 6 hours with full grader
outputs. Starting Monday 4/18, you will be able to submit once
every 3 hours with full grader outputs. On the due date, Friday

4/22, there will be no restrictions on the grader.

NOTE: The checkpoint grader restrictions are much more lenient

than the main project 3 autograder.

Grader Details

The due date for Project 3 is Friday 4/29 at 11:59 PM. We will
be grading on style, our acceptance tests, and your tests for a

total of 24 points.

On release, you will be able to submit once a day without any
grader outputs. Starting Wednesday 4/20, you will be able to
submit once a day with grader outputs. On Thursday 4/28, you
will be able to submit once every six hours, with grader outputs.
On Friday 4/29, you will be able to submit once every three
hours with grader outputs. On Friday 4/29 at 11pm, you will be
able to submit once every 15 minutes, and there are no

restrictions to the grader after the deadline.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 60/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

updadled MakeTlle dia tester.py. 1nese nave peeri cidlrigea
align with the autograder on Gradescope. When running make
check, each test will be run 5 times. To do this while running
tests individually with tester.py, please add the flags --reps=5
to set how many times the tests are run. This is done to help
avoid any non-determinism that may come up when running your
tests. When running your tests multiple times, every run of that

test must pass in order to get credit for that test.

Things to Avoid

There are few practices that experience has shown will cause
you endless grief in the form of programs that don't work and
bugs that are very hard to find and sometimes not repeatable

("Heisenbugs").

1. Since you are likely to keep various information in files
(such as commits), you might be tempted to use apparently
convenient file-system operations (such as listing a
directory) to sequence through all of them. Be careful.
Methods such as File.list and File.listFiles produce
file names in an undefined order. If you use them to
implement the 1og command, in particular, you can get

random results.

2. Windows users especially should beware that the file
separator character is / on Unix (or MacOS) and \ on
Windows. So if you form file names in your program by
concatenating some directory names and a file name
together with explicit /s or \s, you can be sure that it won't
work on one system or the other. Java provides a system-
dependent file separator character File.separator, as in
".gitlet" + File.separator + "something", or the

multi-argument constructors to File, as in \ new

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 61/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

piace o1 " .gitiet/sometning).

3. Be careful using a HashMap when serializing! The order
of things within the HashMap is non-deterministic. The
solution is to use a TreeMap which will always have the
same order. More details here. Specifically, iterating
through a HashMap can lead to non-deterministic behavior,

which is avoided with a TreeMap.

Going Remote (Extra Credit)

This is the first of two possible extra-credit features. To save you
from yourselves, we will only give credit for one of them, and will
ignore the other. Of course, you can do both nevertheless (out of
the sheer joy of programming), but don't expect any extra extra

credit as a result.

This project is all about mimicking git's local features. These are
useful because they allow you to backup your own files and
maintain multiple versions of them. However, git's true power is
really in its remote features, allowing collaboration with other
people over the internet. The point is that both you and your
friend could be collaborating on a single code base. If you make
changes to the files, you can send them to your friend, and vice
versa. And you'll both have access to a shared history of all the

changes either of you have made.

To get extra credit, implement some basic remote commands:
namely add-remote, rm-remote, push, fetch, and pull You will
get 3 extra-credit points for completing them. Don't attempt or
plan for extra credit until you have completed the rest of the

project.

Depending on how flexibly you have designed the rest of the

project, 3 extra-credit points may not be worth the amount of

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 62/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

everyore Lo ao 1L uur priority wii pe 1 neiping swaerits
complete the main project; if you're doing the extra credit, we
expect you to be able to stand on your own a little bit more than

most students.

The Remote Commands

A few notes about the remote commands:

» Execution time will not be graded. For your own edification,

please don't do anything ridiculous, though.

¢ All the commands are significantly simplified from their git
equivalents, so specific differences from git are usually not

notated. Be aware they are there, however.

So now let's go over the commands:

add-remote

+ Usage: ‘java gitlet.Main add-remote [remote name] [name

of remote directory]/.gitlet

o Description: Saves the given login information under the
given remote name. Attempts to push or pull from the given
remote name will then attempt to use this .gitlet
directory. By writing, e.g., java gitlet. Main add-remote other
../testing/otherdir/.gitlet you can provide tests of remotes
that will work from all locations (on your home machine or
within the grading program's software). Always use forward
slashes in these commands. Have your program convert all
the forward slashes into the path separator character
(forward slash on Unix and backslash on Windows). Java
helpfully defines the class variable

java.io.File.separator as this character.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

63/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

eXISLS, print e ermor messdge. A remote witn Tnat name

Navigation already exists. You don't have to check if the user name

and server information are legit.

Introduction
o Dangerous?: No.

Useful Links

Overview of Gitlet rm-remote

e Usage: java gitlet.Main rm-remote [remote name]
Internal Structures

e Description: Remove information associated with the
Detailed Spec of)) _)
Behavior given remote name. The idea here is that if you ever

wanted to change a remote that you added, you would
The Commands
have to first remove it and then re-add it.

Miscellaneous Things

to Know about the o Failure cases: If a remote with the given name does not
Project exist, print the error message: A remote with that name
Dealing with Files does not exist.
Serialization Details » Dangerous?: No.
Testin

J push

Understanding

e Usage: java gitlet.Main push [remote name] [remote
Acceptance Tests

branch name]

Design Document and
Checkpoint o Description: Attempts to append the current branch's

commits to the end of the given branch at the given
Grader Details

remote. Details:

Things to Avoid
This command only works if the remote branch's head is in

g°i2§:)Rem°te (Extra the history of the current local head, which means that the
reail

local branch contains some commits in the future of the
The Remote remote branch. In this case, append the future commits to
Commands

the remote branch. Then, the remote should reset to the
Diffs (Extra Credit) front of the appended commits (so its head will be the

Diff Utility same as the local head). This is called fast-forwarding.

If the Gitlet system on the remote machine exists but does

not have the input branch, then simply add the branch to

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 64/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

¢ Failure cases: If the remote branch's head is not in the

Navigation history of the current local head, print the error message

Please pull down remote changes before pushing. If
Introduction .))
the remote .gitlet directory does not exist, print Remote

Useful Links directory not found.

Overview of Gitlet » Dangerous?: No.

Internal Structures
fetch

Detailed Spec of
Behavior e Usage: java gitlet.Main fetch [remote name] [remote

branch name]
The Commands

e Description: Brings down commits from the remote Gitlet
Miscellaneous Things

to Know about the repository into the local Gitlet repository. Basically, this

Project copies all commits and blobs from the given branch in the

Dealing with Files remote repository (that are not already in the current

repository) into a branch named [remote name]/[remote
Serialization Details) _)]
branch name] in the local .gitlet (just as in real Git),

Testing changing [remote name]/[remote branch name] to point

Understanding to the head commit (thus copying the contents of the

Acceptance Tests branch from the remote repository to the current one). This

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

branch is created in the local repository if it did not

previously exist.

o Failure cases: If the remote Gitlet repository does not

have the given branch name, print the error message That

remote does not have that branch. If the remote
.gitlet directory does not exist, print Remote directory

not found.

o Dangerous? No

pull

o Usage: java gitlet.Main pull [remote name] [remote

branch name]

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

65/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

prancn namej ds 10rI e retcn Colnimndna, ana wmeri merges

. . that fetch into the current branch.
Navigation

o Failure cases: Just the failure cases of fetch and merge
Introduction
together.

Useful Links
o Dangerous? Yes!

Overview of Gitlet

Internal Structures

Detailed Spec of Dlﬁ:S (Eth’a Credlt)

Behavior

This is the second of two possible extra-credit features. Again,
The Commands .
we will only count one of them.
Miscellaneous Things
to Know about the
Project

Usage: java gitlet.Diff [branch-name [branch-name]]

Description: The git diff command compares the contents of
Dealing with Files a commit with a working directory or compares two commits, and
presents any differences as a unified diff. Suppose that the latest

Serialization Details
commit on the current branch contains the following three files:

Testing
f.txt g.txt h.txt
Understanding el
Acceptance Tests Line 1. This is a wug. This is not
Line 2.
Design Document and Line 3.
Checkpoint Line 4.
Line 5.
Grader Details Line 6.
Line 7.
Things to Avoid Line 8.
Line 9.
Going Remote (Extra Line 16.
Credit) Line 11.
Line 12
The Remote L%ne 13.
Commands Line 14.
Line 15.
Diffs (Extra Credit) Line 16.
Line 17
Diff Utility 4 G >

and suppose that the working directory contains the following

two files:

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 66/69

3/17/25, 10:34 AM Project 3 | CS 61B Spring 2022

Line @. This is a wug.
: i Line ©.1.
Navigation
g Line 1.
) Line 3.
Introduction Line 4.
Line 7.
Useful Links Line 8.
Line 9.
Overview of Gitlet Line 9.1.
Line 9.2.
Internal Structures Line 10.
Line 11.
Detailed Spec of Line 11.1
Behavior Line 12.
Line 13.1
The Commands Line 14.
Line 15.
Miscellaneous Things L}ne 16.1
to Know about the L%ne 17.1
Project Line 18.
Dealing with Files Performing the command java gitlet.Main diff should

e) produce the following output:
Serialization Details

diff --git a/f.txt b/f.txt

Testing
--- a/f.txt
Understanding +++ b/f.txt
Acceptance Tests @@La.'@’g +1,2 @@
+Line ©.
Design Document and (g(lélr_\g ?31@ @@
Checkpoint “Line 2 ’
-5,2 +5,0
Grader Details Cf)(E)ineJS ;6 00
-Line 6.
Things to Avoid @@ -9,0 +9,2 @@
+Line 9.1.
Going Remote (Extra +Line 9.2.
Credit) @@ -11,0 +13 @@
+Line 11.1.
The Remote @@ -13 +15 @@
Commands -Line 13.
+Line 13.1
Diffs (Extra Credit) @@ -16,2 +18,3 @@
-Line 16.
Diff Utility -Line 17.
+Line 16.1
+Line 17.1
+Line 18.

diff --git a/h.txt /dev/null

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html 67/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

@@ -1 +9,0 @@

-This is not a wug.
The two lines starting diff --git indicate the start of the
differences for one of the files in the two versions (the head of
the current branch and the current (uncommitted) contents of the
working directory. These diff lines are followed by a --- and
+++ line, also giving the file name. Next come a sequence of
edits, each starting with a line beginning and ending with @@. The

entry
@@ -L1,N1 +L2,N2

says that this entry indicates that to get the second version of the
file from the first, one removes N1 lines starting at line L1 of the
first version, and inserts N2 lines from the second version
starting with line L2 of the second version. When N1is O, L1 is
the number of lines before the lines to be deleted. Likewise,
when N2 is 0, L2 is the number of lines in the second version
that correspond to the lines preceding line L1 in the first version.
When N1 or N2 is 1, it (and the comma in front of it) is not
printed (e.g., @ -13 +15 @@ in the example.) When one of the
versions of the file is missing (as for h. txt here), its name is
printed as /dev/null (the standard Unix empty file), and itis in
fact treated as an empty file when comparing. If both versions of

a file are identical, no diff is given for that file.

With no arguments, we compare the commit at the head of the
current branch with the files in the working directory. Any files in

the working directory and not in the current branch are ignored.

With one argument, as in git diff branchi, the contents of the
commit at the head of the branch named branch1 are compared

to the versions in the working directory.

With two arguments, as in git diff branchl branch2, the

contents of the commit at the head of the branch named branchl

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

68/69

3/17/25, 10:34 AM

Navigation
Introduction
Useful Links
Overview of Gitlet
Internal Structures

Detailed Spec of
Behavior

The Commands

Miscellaneous Things
to Know about the
Project

Dealing with Files
Serialization Details
Testing

Understanding
Acceptance Tests

Design Document and
Checkpoint

Grader Details
Things to Avoid

Going Remote (Extra
Credit)

The Remote
Commands

Diffs (Extra Credit)

Diff Utility

Project 3 | CS 61B Spring 2022

way, uidtL uie Nlrsi (a/) e cdl pe saev/null.

Failure cases: If the branch in the one-argument case does not
exist, print the message A branch with that name does not
exist. If one or both of the branches in the two-argument case
does not exist, print the message At least one branch does

not exist.

Dangerous?: No.

Diff Utility

We have provided a file gitlet/Diff.java in the skeleton, which
will compare two sequences of lines read from files, and
compute the edits needed to convert one to the other. You will

have to read its comments and figure out how to use it to

produce the desired output format.

This utility works by finding a longest common subsequence of
lines in the two files—a subsequence that appears in both files,
but not necesaarily in the same place. The lines of the
subsequence may be scattered in different ways in the two files
(they are not necessarily adjacent to each other), but the lines
appear in the same order in each. From such a subsequence,
the utility is able to figure out how to change one file into the

other by modifying a minimal number of lines.

https://inst.eecs.berkeley.edu/~cs61b/sp22/materials/proj/proj3/proj3.html

69/69

